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Note 

On Acceleration of MacCormack’s Scheme* 

An acceleration of MacCormack’s scheme due to Dbideri and Tannehill is analyzed. 
It is found that for hyperbolic problems one cannot improve upon the efficiency of 
MacCormack’s method. For parabolic problems the time step can be chosen arbitrarily 
large without loss of stability by an appropriate choice of the acceleration parameters. 
When applied to the heat equation this method is equivalent to both the Dufort-Frankel 
scheme and to MSOR. 

D&id&i and Tannehill [2] recently introduced an overrelaxation in order to 
accelerate the convergence of MacCormack’s scheme [6] to steady state. They present 
some impressive computational results. In this note we present some further analysis 
to explain these results. 

To facilitate the analysis we introduce a minor modification of their scheme. 
Consider the equation 

Ut =f= + ewz . (1) 

Then we analyze the difference scheme 

and 

where 

w, 8 are the acceleration parameters. 

(2) 

(3) 

* This report was prepared as a result of work performed under NASA Contract No. NASl-14101 
while both authors were in residence at ICASE, NASA Langley Research Center, Hampton, Va. 
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This difference scheme is consistent with the differential equation for all nonzero 
values of the acceleration parameters. The modified equation obtained by D&id&i 
and Tannehill [3] is valid only for linear equations. The only way to converge faster 
to the steady-state solution is by using larger time steps. As D&id&i and Tannehill 
remark it is difficult to analyze this combined system. Hence, we shall analyze sepa- 
rately the linear hyperbolic and parabolic systems. 

For the hyperbolic equation with constant coefficients, i.e., f = au, D = 0, it 
follows by a domain-of-dependence argument that one cannot increase the stability 
limit over MacCormack’s scheme by any choice of W, 6. Alternatively, algorithm (2) 
can be written after a Fourier transform, for this case as 

1 o)(““+l) = (1 0 6 41 +;ym- ‘“)(g , 
--o[l + X(1 - eSim)] 1 vn+l 

(4) 

where v is the Fourier transform of u, 01 is the Fourier variable, and h = aA2 At/Ax 
or 

Awn+1 = Bwn, 

Letting g be an eigenvalue of G we have 

0 = g2 --a + Yl + rz@(or) - 111 + Yl (5) 

where y1 , ye are given by (2) and h(a) is the amplification factor for the MacCormack 
scheme, i.e., h(a) = 1 + hi sin 01 - P(1 - cos a). 

Using the theorem of Miller [8] we found that necessary and sufficient conditions 
for g to be in the unit circle are 

(1) IYl/ <l, 

(2) I [1 -I YI -I- y2(Re h(a) -l)l[l - yJ + iy2 Im h(a)(l + rI)l < 1 

This implies that 

A2 d ~~l ((1 - Yl>"/U + Yl)) - Y20 - 5") . 

((1 - Yl)"l(l + m Y2f2 ' 
5 = sin(a/2). 

Thus, we require that 

and 
Yz G (1 - Yl)“/(l + r1) 

aWlx < ((1 + y1)y2/(1 - ~3~)~‘~. 

Y12. 
(6) - 

(7) 

(8) 

(9) 

Combining Eqs. (8) and (9) we see that adt/dx < 1; i.e., we cannot improve on the 
original MacCormack schemes for hyperbolic equations. 

For other basic algorithms the overrelaxation can improve the stability. Thus, 
one can show that this technique will increase the allowable time for some parameters 
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in the fourth-order extension of MacCormack’s method [5]. We observe that D&id&-i 
and Tannehill found their smallest increase in convergence for the inviscid fluid 
dynamic equations. Even this increase can be explained by two factors. First, 
D&id&i and Tannehill used the two-dimensional version of MacCormack’s scheme. 
It is known (see, for example, [6] or [9]) that this method is not always stable. Thus, 
the acceleration may have stabilized the algorithm. 

As seen from Eq. (7), whenever Eq. (8) is true the stability requirements come from 
the long wavelengths rather than the high frequencies. Numerical tests on nozzle 
flow done by the authors show that one can exceed the Courant condition by 5 to 10 % 
when the flow approaches a steady state. We conjecture that the stabilizing effects of 
the approach to steady state prevents the amplification of long wavelengths while the 
high-frequency noise is damped by the scheme. This property may be more important 
for different values of w, G than those for the original MacCormack method. 

For the parabolic case, f = 0 and D constant, the eigenvalues of the amplification 
factor are given by 

0 = g2 -iid* + 71 - Y2Q - (1 - 405331 + 71, (10) 

with yl, y2, [ as before and CJ = DL’A~/(Ax)~. Again, using the theory of Miller 
we require 

(1) IYll G 1, 

(2) I 1 + Yl - Y2D - (1 - 4&3”3l (1 - Yl) =G (1 - Y112- 

This implies that 
(11) 

and if y2 > 4(1 + rl) we also require 

DAt 4(1 + y1) 1’2 
GW2 G 4(1 y” yJ I ( 

1- l- 
Y2 1 I* 

We thus see that by choosing y1 close to one we can allow arbitrarily large time steps. 
y1 , y2 are not independent. In order to solve for w, ~7, we must have 

or 
y2 -=c 20 - W'">" 

w 
Ye > a1 + hY2>“- 

To select the optimal acceleration parameters we rewrite Eq. (2) with f = 0 and 
let u = SZ(At/(Ax)‘J): 

*y-t1 = (1 - &) z.Qn + w[o(Dj++Uin_l + Dj-&) - (uDj++ + oD,-+ - 1) %“I, c13j 
,;+in+l zzz (1 - w) ujn + w[o(Dj+p;=+I + D&?;) - (aDj++ + uDjwt - 1) vj”*‘]. 

This is identical to MSOR for which there exists a known theory (see [lo]). In parti- 
cular the optimal parameters for the two-dimensional heat equation converging 
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to the Poisson equation in a square are given by w  = ~3 = 2 - 2h. For more general 
domains and nonconstant D the optimal parameters are usually not known a priori. 

D&id&i and Tannehill found that the accelerated scheme was more efficient at 
fine meshes. The reason for this is that the cell Reynolds number decreases with 
finer meshes, hence making the problem more parabolic-like. Since the scheme mainly 
accelerates the parabolic terms this effect is well understood. 

We now consider the Dufort-Frankel scheme with a stabilizer as given by Gottlieb 
and Gustafsson [4]: 

I$+' = IV;-' + ct[Dj+&vjn,, - w~~)-D~&~~- I&)]- ar(wjn+'- 21~~” + wj”-l), (14) 

where 01 = 241/(dx)~ and I’ >, spectral radius of D. Since r is a scalar even for 
vector equations we can solve explicitly for @+I with no matrix inversions. We now 
let u.n = w?” and v .n = ~2”~~ 3 3 3 3 * We then find that 

1 - olr ,jn+1 z ___ 
1 + o!r vjn + + Dj+t4+1 + Dj-tu;-t-l - CD,+* + Dj-+ + r) uinl, 

I - ar 
(15) 

q+1 = ___ 
I -+ d 'jn + 

e [Dj++UTz: + Dj-+UTz-(Dj++ + Dj-+ + r) vi, 

but this is identical to Eq. (13) if we identify 

w  = 2d/(l + d), o.=l/2r or cy = 42 - o)r, r = 112~. 

Thus, for a pure parabolic problem the accelerated MacCormack scheme is identical 
to the Dufort-Frankel scheme where the time step of the MacCormack scheme is 
related to the dissipation of the Dufort-Frankel method. The stability condition 
r < p(D) is equivalent to the usual condition on Lax-Wendroff parabolic schemes 
that D(dt/(d$) -C , &. The margnial stability found by Gottlieb and Gustafsson 
when I’ = 1 is a reflection of difficulties occurring when choosing the time step at the 
stability boundary. Chorin [I] has already pointed out the relationship of Dufort- 
Frankel to SOR. 

This identification of the scheme proposed by DCsidCri and Tannehill with MSOR 
and Dufort-Frankel for parabolic problems also suggests certain difficulties with the 
accelerated MacCormack scheme. First, time splitting schemes (see for example 
MacCormack and Paullay [7]) may no longer apply if 6j # 1 since the scheme is not 
absolutely stable. Also the new scheme may require more storage. The regular 
MacCormack scheme can be programmed so that only one storage level is required 
without unnecessary evaluation of fluxes. The accelerated scheme, in common with 
all leap-frog-type methods, requires at least two levels of storage. 
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